產(chǎn)品列表PRODUCTS LIST
球狀體和類(lèi)器官——你知道有什么區別嗎?
類(lèi)器官和球狀體經(jīng)常被用作可互換的術(shù)語(yǔ),特別是對剛進(jìn)入3D組織模型領(lǐng)域的人來(lái)說(shuō)。人們可能覺(jué)得這兩個(gè)術(shù)語(yǔ)意味著(zhù)同樣的事情,然而,這并不準確。理解兩者的區別并不復雜,因為類(lèi)器官和球狀體的含義是非常直觀(guān)的。
球狀體是球形的細胞實(shí)體,通常作為自由漂浮或懸浮的聚合體生長(cháng)。它們通常是從細胞系或人體組織的碎片中培養出來(lái)。細胞在生長(cháng)過(guò)程中相互粘連,而不是粘在生長(cháng)介質(zhì)或容器的壁上。
類(lèi)器官可以被描述為三維結構,主要由單個(gè)干細胞生長(cháng)而成,通常是克隆性的,分化成具有器官組織的結構單元。相反,球狀體是由不同或相同類(lèi)型的細胞聚集形成的,以實(shí)現一種或多種器官表型。類(lèi)器官可以從許多組織中培養出來(lái),如腸道、視網(wǎng)膜、大腦、肝臟、肺和腎臟。
總之,類(lèi)器官和球狀體的產(chǎn)生是作為體外模型,更好地模仿體內組織的形態(tài)和生理。3D模型的zuijia選擇將始終取決于研究項目所需的3D模型的簡(jiǎn)單或復雜程度。
類(lèi)器官和球狀體之間有什么關(guān)鍵區別嗎?
類(lèi)器官和球狀體之間的關(guān)鍵區別是聚集的驅動(dòng)力。在球狀體中,由蛋白質(zhì)介導的細胞-細胞粘附是其穩定性的原因。另一方面,類(lèi)器官中的細胞是在干細胞分化過(guò)程中共同發(fā)育連接起來(lái)的。
各自的優(yōu)勢和劣勢是什么?
類(lèi)器官和球狀體都是研究組織對外部因素如藥物、物理刺激或病原體反應的工具。例如,最近的一項研究使用來(lái)自支氣管上皮細胞的球狀體研究了環(huán)境參數,如空氣污染如何影響我們的呼吸道[1]。類(lèi)器官,根據組織的類(lèi)型,可以更接近于模仿體內組織的細胞環(huán)境。然而,獲得類(lèi)器官可能很困難,因為它們的表型和生存能力高度依賴(lài)于支持其生長(cháng)的培養基和基質(zhì)。
球狀體和類(lèi)器官也常用于研究腫瘤,特別是在個(gè)性化醫療中??梢詮陌┌Y患者身上提取細胞,然后將其培養成該特定癌癥的3D細胞模型。因為癌癥是一個(gè)遺傳上du特的實(shí)體,它對特定的藥物和治療方法有單獨的反應。3D細胞模型可用于測試癌癥的敏感性,以幫助指導病人的治療。球狀體和類(lèi)器官都可以用來(lái)研究微環(huán)境和模擬腫瘤的宏觀(guān)特征。
什么情況應該使用類(lèi)器官,什么情況應該使用球狀體?
在一項的研究中,必須根據細胞類(lèi)型、計劃的實(shí)驗、時(shí)間和預算限制來(lái)仔細選擇模型。例如,球狀體通常不僅形成速度快,而且更容易維護。類(lèi)器官通常需要特定的輔助因子來(lái)誘導分化,并需要特定的培養基條件來(lái)保證培養的活力;因此,它們可能是不切實(shí)際和昂貴的。類(lèi)器官的表型高度依賴(lài)于用于培養它們的培養基或基質(zhì)。用于培養類(lèi)器官的基質(zhì)通常來(lái)自于動(dòng)物組織。因此,在這些試劑的生產(chǎn)過(guò)程中,存在著(zhù)明顯的批次間差異,這將極大地影響這些模型的可重復性。
如何培養類(lèi)器官和球狀體呢?
當嘗試創(chuàng )建3D細胞模型時(shí),有各種不同的方法。最重要的區別是這種方法是基于支架還是不基于支架。細胞球體可以用任何一種方法生長(cháng)。無(wú)支架方法通常簡(jiǎn)單快捷。例如,球狀體可以以合適的速度離心產(chǎn)生[2]。另一種培養球狀體的方法是懸滴法。在液滴的底部,細胞開(kāi)始在表面張力和重力的作用下相互粘附,形成一個(gè)球體。
利用磁力也可以形成球體。首先,細胞需要磁化,例如使用Greiner Bio-One Nanoshuttle-PL孵育過(guò)夜[2]。通過(guò)這種方式處理的細胞可以種植到帶有磁鐵的平板上,導致它們在磁鐵上方定向組裝,并促進(jìn)快速的細胞-細胞相互作用,從而加速球體的形成。
基于支架的方法試圖通過(guò)提供細胞生長(cháng)的基質(zhì)來(lái)模擬自然環(huán)境和形狀。因此,基于支架的方法主要用于培養類(lèi)器官。一些市銷(xiāo)的用于此目的的物質(zhì)來(lái)源于動(dòng)物的基底膜,含有多種蛋白質(zhì),對從細胞外基質(zhì)到細胞的信號轉導很重要,可以提供重要的刺激,特別是對體內通常停留在基底膜上的上皮細胞。然而,直接從動(dòng)物中制備的基質(zhì)需要大量組織才能大規模生產(chǎn),這存在一定的倫理問(wèn)題,也是批次間差異的來(lái)源,這會(huì )妨礙這些模型的可行性和可重復性。與其他商業(yè)化產(chǎn)品相比,使用磁性3D (M3D)細胞培養的3D模型已被證明能產(chǎn)生更復雜的細胞外基質(zhì)[3]。
參考文獻
Baarsma HA, Van der Veen CHTJ, Lobee D, Mones N, Oosterhout E, Cattani-Cavalieri I, Schmidt M. Epithelial 3D-spheroids as a tool to study air pollutant-induced lung pathology. SLAS Discov. 2022 Apr;27(3):185-190. doi: 10.1016/j.slasd.2022.02.001. Epub 2022 Feb 25. PMID: 35227934.
Bosnakovski D, Mizuno M, Kim G, Ishiguro T, Okumura M, Iwanaga T, Kadosawa T, Fujinaga T. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Exp Hematol. 2004 May;32(5):502-9. doi: 10.1016/j.exphem.2004.02.009. PMID: 15145219.
Vu B, Souza GR, Dengjel J. Scaffold-free 3D cell culture of primary skin fibroblasts induces profound changes of the matrisome. Matrix Biol Plus. 2021 May 12;11:100066. doi: 10.1016/j.mbplus.2021.100066. PMID: 34435183; PMCID: PMC8377039.